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Abstract
Using a universal density of states (Mintmire and White 1998 Phys. Rev. Lett. 81 2506), we
have found an analytic expression for the long-axis linear susceptibility of single-walled carbon
nanotubes valid for arbitrary diameter and chirality. The applicability of our general expression
has been assessed by comparison with numerical calculations. Excellent agreement is
demonstrated in the low-energy range for semiconducting carbon nanotubes having a moderate
or large diameter. The agreement is less convincing for metallic nanotubes having the same
diameter as semiconducting ones and the reason for this difference has been clarified. Based on
the simple closed-form expression for the linear susceptibility and using the perturbation
treatment developed by Aspnes and Rowe (1972 Phys. Rev. B 5 4022), an analytic expression
for the third-order nonlinear optical susceptibility χ(3)(ω; 0, 0, ω) has been derived for arbitrary
semiconducting single-walled carbon nanotubes.

1. Introduction

Single-walled carbon nanotube (CN) structures, constructed by
rolling up a graphite sheet into a cylinder, can be specified by
a pair of indices (n, m) with 2n + m = 3p + r , where p is
an integer and r = 0, 1, 2 define metallic, semiconducting
type I (SI), and type II (SII) CNs, respectively [1–3]. Since
their discovery in 1991 [4], the electronic properties of these
structures have attracted much attention. Their electronic
properties within the single-particle approximation are often
described by the tight-binding approximation [5–9]. The
optical properties of CNs have been examined in several
theoretical and experimental papers [10–14]. In our previous
work [15] we used a simple orthogonal tight-binding model to
study the dipole matrix element and linear susceptibility for
light polarized parallel and perpendicular to the nanotube axis.
We found an analytic expression for the linear susceptibility
of zigzag CNs in the parallel case. By studying the optical
absorption of CNs, Mali’c and co-workers have also presented
an analytic expression for the absorption coefficient of zigzag
CNs [16]. However, due to the rather complicated k-
dependence of the energy, it has not yet been possible to
find analytic results for the optical properties of arbitrary

(n, m) chiral CNs. In this paper, we demonstrate that an
approximate optical susceptibility χ(ω) of arbitrary CNs can
be obtained. Importantly, excellent agreement with full
numerical results is found in the low-energy range. A central
ingredient in the present computation is the universal density
of states (DOS) found by White and Mintmire [17, 18].
Using a first-order expression for the energy, these authors
showed that all semiconducting CNs with similar diameters
have similar DOS near the Fermi level, independent of chiral
angle. We demonstrate that this observation combined with
an approximation of the CN dipole matrix elements near the
Fermi level enables analytic integration over all transition
energies. The resulting analytic expression for the linear
susceptibility provides an accurate closed-form expression
valid for CNs with arbitrary diameter and chirality.

The paper is organized as follows. In section 2, we discuss
the energy dispersion relation and optical matrix elements
of chiral CNs in a convenient rotated coordinate system.
Expanding the optical matrix element close to the Fermi
level and using the universal DOS we derive a closed-form
expression for linear susceptibility for arbitrary (n, m) CNs
and explain its dependency on the structure parameters in
section 3. We use the linear susceptibility to derive an analytic
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Figure 1. Positions of an A atom at the origin and its three nearest
neighbor B atoms. The angle between these bonds and the chiral �C
and translational �T vectors are also shown.

expression for the quadratic electro-optic (QEO) response for
arbitrary (n, m) semiconducting CNs in section 4. Finally, a
summary is given in section 5.

2. Theory

Figure 1 shows the atom A at the origin and its three nearest
neighbor B atoms in the hexagonal lattice of graphene along
with the rotated coordinate system (x, y) that we use for our
analytic calculations.

To make a tube, the translational vector �T will be in
the direction of the nanotube axis and the chiral vector �C
in the circumferential direction. Hence, we consider the y
axis parallel to the translational vector and the x axis in the
circumferential direction in order that the wavenumbers k and
k⊥ provide the axial and circumferential components of the
wavevector, respectively. Following [1], the elements of the

Hamiltonian matrix
↔
H are given by

Hαβ(k) =
∑

t

ei�k·( �Rβ0− �Rαt )
〈
ϕ(�r − �Rαt )

∣∣∣ H
∣∣∣ϕ(�r − �Rβ0)

〉
. (1)

Here, �Rαt ( �Rβ0) is the position vector for each α(β) carbon
atoms in the t th (zeroth) unit cell, ϕ(�r − �R) denotes the atomic
π orbital of each carbon atom, and H is the Hamiltonian. The
elements of the 2 × 2 Hamiltonian matrix are defined by

H12 = H ∗
21 = γ0

[
e−i2K1/3 + 2eiK1/3 cos(K2)

]

H11 = H22 = 0

K1 = [
k⊥ cos(θ) − k sin(θ)

]√
3a/2

K2 = [
k⊥ sin(θ) + k cos(θ)

]
a/2,

(2)

where θ = π/6 − cos−1[(2n + m)/2
√

n2 + m2 + nm], γ0 ≈
2.89 eV is the nearest neighbor overlap integral and a =
2.46 Å is the lattice constant of two-dimensional graphite [1].
Solving the secular equation, the energy eigenvalues are
obtained as a function of θ, k:

Ec,v(k) = ±E(k),

E(k) ≡ γ0

√
3 + 2 cos(2K2) + 4 cos(K2) cos(K1),

(3)

where the negative and positive solutions provide valence
(v) and conduction (c) band energies, respectively. The
corresponding normalized eigenvectors are given by

�v(k) = 1√
2
(−g(k), 1)

�c(k) = 1√
2
(g(k), 1)

g(k) = γ0e−i2K1/3

E(k)

[
1 + 2eiK1 cos(K2)

]
.

(4)

In the case of parallel polarization, the direction of the
electric field is in the direction of the nanotube axis. Using
equation (8) in [15], the axial (y) component of the dipole
matrix element is given by

d y
cv (k) = −e

Ecv(k)

2∑

α,β

c∗
α(k)vβ(k)

1

i

dHαβ

dk
, (5)

where e > 0 is the elementary charge and Ecv(k) = Ec(k) −
Ev(k) = 2Ec(k). Inserting the eigenvector equations (4)
into equation (5), the dipole matrix element for light polarized
parallel to the nanotube axis is given by

d y
cv(k) = 2eaγ 2

0√
3E2

cv(k)
[sin(θ) {cos(2K2) − cos(K2) cos(K1)}

+ √
3 cos(θ) sin(K2) sin(K1)]. (6)

Introducing K2 = kya/2 and K1 = √
3kx a/2, equation (6)

gives equation (11) in [19]. The difference between our
method and that of [19] is that in our rotated coordinate
system x and y are always circumferential and longitudinal
coordinates. Moreover, it demonstrates that the optical matrix
element for the two nearest neighbor atoms introduced in [19]
is given by M = 2aγ0me/(

√
3h̄2). For all arbitrary (n, m)

semiconducting CNs, the allowed wavevector components k⊥
μ

in the circumferential direction are defined by

k⊥
μ L = 2πμ, μ = 0, . . . , N − 1, (7)

where L is the length of the nanotube circumference and N
the number of hexagons in the nanotube unit cell. For zigzag
nanotubes (θ = π/6), equation (6) yields equation (9) in [15]
and for armchair nanotubes (θ = 0), it yields equation (12)
in [19]. Note that in [19], D(k) denotes the momentum matrix
element, which is defined by Dcv(k) = m Ecvdcv(k)/h̄2e.

3. Linear susceptibility

To compute the long-axis linear susceptibility (χyy) of CNs, we
start with equation (2) in [15] written in the following form:

χyy(ω) = 2

πε0σ

∑

c,v

∫ π/T

−π/T

∣∣d y
cv(k)

∣∣2 Ecv(k) dk

E2
cv(k) − h̄2�2

. (8)

Here, the nanotube cross sectional area σ = π R2, where
R is the radius of a CN, ε0 is the vacuum permittivity, T
is the length of the unit cell and � = ω + i contains the

2
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photon frequency ω and the broadening parameter . As
mentioned in [15], the dimensionless susceptibility χyy(ω)

is introduced by normalizing the polarizability by the cross
sectional area of a CN. Using equation (8), we have previously
found an analytic expression for the linear susceptibility of
zigzag CNs [15]. As a prerequisite, an analytical DOS for
zigzag CNs was obtained in order to convert the k-integral into
one over energy. Unfortunately, no exact analytic solution for
the DOS for arbitrary CNs has been obtained so far. Hence,
we utilize a universal but approximate DOS for CNs obtained
by Mintmire and White [18] to find an analytic expression for
the linear susceptibility of CNs valid in the low photon-energy
range. Also, our calculation is simplified by expanding the
trigonometric terms in the dipole matrix element equation (6).
To this end, we note that the dominant k-vector contributions
lie in the vicinity of the K point of the 2D Brillouin zone,
i.e. �K = (4π/3a)[sin(θ), cos(θ)] in the rotated system.
Hence, to linear order in �k − �K , the trigonometric term in
equation (6) is given by

sin(θ) [cos(2K2) − cos(K2) cos(K1)]

+ √
3 cos(θ) sin(K2) sin(K1) ≈ 3

√
3a

4
�k⊥

μ , (9)

where �k⊥
μ is the x-component of �k − �K given by �k⊥

μ =
(2π/L)|μ − 2L sin(θ)/3a| = (2π/3L)|3μ − n + m| since in
the chosen rotated coordinate system 2L sin(θ) = a(n − m).
Equation (9) clearly indicates that in the vicinity of the Fermi
level for a CN with an arbitrary chiral angle θ , d y

cv(k) = 0
only for the value of the band index μ = 2L sin(θ)/(3a) =
(n − m)/3. This means that for zigzag (θ = 30◦) and armchair
(θ = 0◦) CNs, the values μ = n/3 and μ = 0, respectively,
give a vanishing dipole matrix element. As mentioned above,
by using the first-order expression for the energy, E(k) ≈
(
√

3/2)aγ0

√
�k⊥2

μ + �k‖2, Mintmire and White have derived

a universal DOS in the vicinity of the Fermi level for all CNs.
Following their derivation, the contribution of the band μ at k
to the DOS at energy E(k) in the graphene Brillouin zone is
given by [18]

dk‖

dE(k)
= 2E(k)

√
3aγ0

√
E(k)2 − ε2

μ

, (10)

where

εμ =
√

3

2
aγ0�k⊥

μ =
√

3πaγ0

L

[
μ − 2L

3a
sin(θ)

]
. (11)

We note that there is a double degeneracy of bands at low
energy for each CN [1]. As a result, to obtain the correct
DOS, the contribution of the state at k, equation (10), must
be multiplied with a factor of 2. Using equations (9) and (10)
and writing dk‖ = (dk‖/dEcv)dEcv the linear susceptibility is
given by

χyy(ω) = 6
√

3e2a3γ 3
0

πε0σ

N−1∑

μ=0

∣∣�k⊥
μ

∣∣2
χ(μ)

yy (ω), (12)

where

χ(μ)
yy (ω) =

∫ ∞

2εμ

dEcv

E2
cv

(
E2

cv − h̄2�2
)√

E2
cv − 4ε2

μ

. (13)

Here, the integration range 0 � �k‖ � π/T is now
transformed to an integration over Ecv. The lower limit 2εμ is
the band gap located at �k‖ = 0 and the upper limit has been
approximated by infinity. Alternatively, an upper limit could
be determined by requiring that the integrated DOS yields
the correct number of states. However, the obtained upper
limits only affect the response at rather high-photon energies
for which the approximations above are anyway questionable.
Hence, for simplicity we integrate over the range 2εμ � Ecv <

∞ and thus χ
μ
yy(ω) is finally given by the analytic expression

χ(μ)
yy = −1

4ε2
μh̄2�2

[
1 − sin−1(α)

α
√

1 − α2

]
, (14)

where α = h̄�/(2εμ). Together with equation (12) this closed-
form expression gives the linear susceptibility for arbitrary
(n, m) CNs in the low-energy range where εμ is a function of
tube diameter and chirality as well. For armchair nanotubes,
the DOS will have two identical contributions at points K2 =
±2π/(3a), in the first Brillouin zone. For other metallic
CNs this degeneracy is broken because of deviations of the
true energy E(k) from radial symmetry near �kF , for the two
points K2 = ±2π/(3T ) are not equivalent. As a result,
the susceptibility must be multiplied with a factor of 2 for
armchair CNs. We emphasize that equation (14) includes
intraband transitions for the bands passing through the Fermi
point, where subscripts c = v at μ = (n − m)/3. This point
appears only for metallic CNs. For intraband transitions, one
can show that the Drude conductivity σ (intra)

yy (ω) = −2iε0(ω +
i)χ(intra)

yy (ω) (again with a factor of 2 due to degeneracy) is
given by

σ (intra)
yy (ω) = i16

√
3e2γ0a

h̄2L2(ω + i)
, (15)

which is the dominating term at sufficiently low frequencies.
Note that interband transitions with μ = (n − m)/3 give zero
contribution to the linear susceptibility.

To assess the applicability of the first-order expression for
calculating the linear susceptibility of (n, m) CNs, figure 2
shows the imaginary (χ ′′

yy) parts of χyy for semiconducting
(4, 2), (8, 4), and (10, 6) CNs having diameters about
0.41, 0.82, and 1.09 nm respectively and metallic (12,
9), (12, 12), and (21, 9) CNs having diameters about
1.43, 1,63, and 2.08 nm respectively in comparison with a
numerical calculation, where the broadening parameter h̄ =
0.1 eV [12]. As shown, the first two resonance peaks for
semiconducting CNs having a moderate or large diameter
overlap well within those obtained by numerical calculation
but for metallic CNs this agreement is less convincing. The
difference between the two groups of semiconducting and
metallic CNs will be discussed in the following.

The position of the resonances near the Fermi level can be
estimated as follows. According to the first-order expression
for the energy, at �k‖ = 0 and �k⊥

μ = (2π/3L)|3μ − n + m|,
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Figure 2. Comparison of analytical and numerical calculations of the interband long-axis linear susceptibility versus energy for
semiconducting (a) and metallic (b) CNs.

the value μ = (n − m)/3 gives the Fermi point for metallic
CNs. Also, the minimum energy value for the second-lowest
conduction band occurs at μ = (n − m)/3 ± 1 for metallic
CNs. For semiconducting CNs, the lowest conduction band is
obtained by setting μ = (n − m + 1)/3 and (n − m − 1)/3
for SI and SII CNs, respectively. Using these values of μ, the
lowest excitation energies for semiconducting (S) and metallic
(M) CNs are given by

E (S)

11 =
√

3aγ0

3R
, E (M)

11 =
√

3aγ0

R
, (16)

in agreement with [8]. This equation has been previously
obtained by White et al [20, 21] by studying the construction
of single-walled CNs in terms of their helical and rotational
symmetries. Equation (16) shows that the lowest resonance
for metallic nanotubes of radius R coincides with that
of semiconducting nanotubes of radius 3R independent of
chirality. This result is only valid in the vicinity of the K point,
however. The effect of chirality on the electronic structure and
the band gap of single-walled CNs has been studied by White
et al, see figure 11 and related text in [22]. In agreement with
the present work, these authors found that applying the linear
approximation for the energy and ignoring curvature effects
removes the dependence of van Hove singularities on chirality.
Saito and co-workers showed that the peak positions of the van
Hove singularities, in fact, depend on the nanotube chirality [8]
if corrections beyond the linear approximation are included.
They further showed that the trigonal warping effect is larger
for metallic than for semiconducting nanotubes of comparable

diameters. The perpendicular components of �k − �K for the
fundamental resonance of metallic and semiconducting CNs
are given by �k⊥(M)

μ = 1/R and �k⊥(S)
μ = 1/3R, respectively.

Hence, the distance from the K point is three times larger
for metallic CNs than for semiconducting CNs. Therefore,
interband resonances in metallic CNs rapidly reach the region
where the linear approximation is no longer appropriate [8].
This is the reason for the slightly worse agreement between
analytic and numerical results for small diameter metallic CNs
shown in figure 2. The imaginary (χ ′′

yy) parts of χyy for
several semiconducting CNs having about the same diameter
(from 1.08 to 1.09 nm), but different chiral angles, including
θ = 30◦ for zigzag nanotubes (14, 0) and θ = 4.13◦ and
8.2◦ for chiral nanotubes (9, 7) and (10, 6) respectively, are
shown in figure 3(a). Metallic CNs, all having about the same
diameter (from 1.35 to 1.41 nm), but different chiral angles,
including θ = 30◦ for zigzag nanotubes (18, 0), θ = 0◦
for armchair nanotubes (10, 10), and θ = 9.8◦ for chiral
nanotubes (13, 7) are shown in figure 3(b). As shown in
figure 3, the chirality dependence of the linear susceptibility
is weakly visible for metallic CNs but practically absent for
semiconducting CNs.

4. Quadratic electro-optic effect

Using the perturbation treatment developed by Aspnes and
Rowe [23], we previously obtained an analytic expression
for the quadratic electro-optic (QEO) effect in zigzag
CNs [24]. Applying a nonperturbative numerical calculation

4
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Figure 3. Imaginary part of the interband long-axis linear
susceptibility versus energy for several CNs of approximately the
same diameter but different chirality. Panel (a) semiconducting CNs
and panel (b) metallic CNs.

and comparing with the analytic result, we found a virtually
indistinguishable result for zigzag CNs in our previous
work [24]. To find the QEO effect in arbitrary (n, m) CNs we

again utilize the approximate relation

χ(3)
yy (ω; 0, 0, ω) = 1

3h̄2�2

e2h̄2

8m∗
∂3

[
h̄2�2χyy(ω)

]

∂(h̄�)3
, (17)

where m∗ is the reduced effective mass. For both numerical
and analytic calculations for semiconducting CNs we use
the effective mass related to the fundamental valence and
conduction bands obtained by using the first-order expression
for the energy given by

m∗ = 4π h̄2

3
√

3aγ0L
. (18)

It is noticed that upon multiplication by h̄2�2, the first term
of equation (14) becomes independent of h̄� and thus its
derivative is zero. Therefore, the only nonzero contribution
to the QEO response comes from the second term. Using
equations (12) and (14) and inserting into equation (17), simple
computations then yield

χ(3)
yy (ω; 0, 0, ω) =

√
3e4a3γ 3

0

2h̄6�6L2ε0

N−1∑

μ=0

|3μ − n + m|
(1 − α2)7/2

× {
3 sin−1(α)(8α6 − 8α4 + 7α2 − 2)

+ α(1 − α2)1/2
(
26α4 − 17α2 + 6

)}
. (19)

This relatively simple equation allows us to compute analyt-
ically the QEO effect for semiconducting CNs with arbitrary
(n, m) indices. For comparison, we illustrate the imaginary
and real parts of χ(3)(ω; 0, 0, ω) for some semiconducting CNs
using the analytic expression equation (19) and a full numerical
calculation in figures 4(a) and (b). The numerical calculation

Figure 4. Comparison of analytic and numerical results for imaginary (a) and real (b) part of the QEO response for several
semiconducting CNs.
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Figure 5. Imaginary (a) and real (b) part of the QEO response for
several semiconducting CNs having the same diameter but different
chirality.

is obtained by utilizing the perturbation treatment in [23] and
using equations (8) and (17). To do this, we take account of
the full k-dependence of transition energies and dipole matrix
elements as well as include all band-to-band transitions and fi-
nally integrate over the first Brillouin zone numerically. As for
the linear susceptibility, excellent agreement is observed for
the first two resonance peaks for semiconducting CNs having
a moderate or large diameter.

We compare the QEO effect for SI and SII CNs including
(14, 0) and (10, 6) having the same diameter (1.09 nm) but
different chirality θ = 30◦, 8.2◦ and (11, 9) and (12, 8)
having the same diameter (1.3 nm) but different chirality θ =
3.3◦, 6.6◦, respectively. As shown in figure 5, the QEO effect
at low energy for SI and SII CNs is virtually independent of
the chirality and the type of SI or SII CNs as well. The QEO
function depends weakly on chirality via the parameter εμ as
demonstrated above for semiconducting CNs. Moreover, the
effective mass in the denominator of the QEO function depends
only on the nanotube diameter, see equation (18). As a result
we get exactly the same spectrum for (14, 0) and (10, 6) CNs
and also exactly the same spectrum for (11, 9) and (12, 8) CNs.
By analyzing the fundamental resonance of several chiral CNs
we have found a monotonous increase in the magnitude with
increasing radius.

5. Summary

In this paper, we have derived an approximate analytic
expression for long-axis linear susceptibility of CNs valid

for arbitrary diameter and chirality. Excellent agreement
with full numerical calculations has been demonstrated in the
low-photon energy range, in particular for semiconducting
CNs. We have subsequently applied the general expression
for the linear susceptibility to find an analytic expression
for the quadratic electro-optic (QEO) effect in arbitrary
(n, m) semiconducting CNs in good agreement with numerical
results.
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